Reinforcement Learning for Combining Relevance Feedback Techniques
نویسندگان
چکیده
Relevance feedback (RF) is an interactive process which refines the retrievals by utilizing user’s feedback history. Most researchers strive to develop new RF techniques and ignore the advantages of existing ones. In this paper, we propose an image relevance reinforcement learning (IRRL) model for integrating existing RF techniques. Various integration schemes are presented and a long-term shared memory is used to exploit the retrieval experience from multiple users. Also, a concept digesting method is proposed to reduce the complexity of storage demand. The experimental results manifest that the integration of multiple RF approaches gives better retrieval performance than using one RF technique alone, and that the sharing of relevance knowledge between multiple query sessions also provides significant contributions for improvement. Further, the storage demand is significantly reduced by the concept digesting technique. This shows the scalability of the proposed model against a growing-size database.
منابع مشابه
RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملWeb pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
متن کاملPersonalized Web-Document Filtering Using Reinforcement Learning
Document filtering is increasingly deployed in Web environments to reduce information overload of users. We formulate online information filtering as a reinforcement learning problem, i.e. TD(0). The goal is to learn user profiles that best represent his information needs and thus maximize the expected value of user relevance feedback. A method is then presented that acquires reinforcement sign...
متن کاملAdaptive and Efficient Image Retrieval with One-Class Support Vector Machines for Inter-Query Learning
We present an extension of previous work on improving the initial image retrieval set by exploiting both intra and inter-query learning. In most Content-Based Image Retrieval (CBIR) systems based on Relevance Feedback (RF), all prior experience is lost whenever a user generates a new query, thus inter-query information is not used. In previous work, a system was developed that learns One-class ...
متن کاملCombining Clustering and Relevance Feedback Techniques in Content-based Image Retrieval
This paper presents a summary of results of ongoing research on the impact of combining clustering and relevance feedback techniques in a content-based image retrieval (CBIR) system. It describes a novel approach to learning the user’s goals and the relevance of each feature for a particular search. by employing a combination of Bayesian learning algorithm and cluster analysis techniques. Resul...
متن کامل